Cell Culture Preparation

1. For adherent cells, harvest with 0.5mM EDTA and then centrifuge at $500 \times g$ for 5 minutes. For suspension cells, harvest by centrifuging at $500 \times g$ for 5 minutes.

2. Wash cells by suspending the cell pellet with PBS.

3. Transfer $1-10 \times 10^6$ cells to a 1.5mL microcentrifuge tube and pellet by centrifugation at $500 \times g$ for 2-3 minutes.

4. Use a pipette to carefully remove and discard the supernatant, leaving the cell pellet as dry as possible.

5. Add ice-cold CER I to the cell pellet (Table 1). Proceed to Cytoplasmic and Nuclear Protein Extraction, using the reagent volumes indicated in Table 1.

Table 1. Reagent volumes for unrefent packed cen volumes.				
<u>Packed Cell Volume (µL)</u>	CER I (µL)	<u>CER II (µL)</u>	NER (µL)	
10	100	5.5	50	
20	200	11	100	
50	500	27.5	250	
100	1000	55	500	
*E III - 106 - 11	·	NO I	1	

Table 1. Reagent volumes for different	t packed cell volumes.*
--	-------------------------

*For HeLa cells, 2×10^6 cells is equivalent to 20μ L packed cell volume.

Tissue Preparation

1. Cut 20-100mg of tissue into small pieces and place in a microcentrifuge tube.

2. Wash tissue with PBS. Centrifuge tissue at $500 \times g$ for 5 minutes.

3. Using a pipette, carefully remove and discard the supernatant, leaving cell pellet as dry as possible.

4. Homogenize tissue using a Dounce homogenizer or a tissue grinder in the appropriate volume of CER I (Table 2).

Proceed Cytoplasmic and Nuclear Protein Extraction, using the reagent volumes indicated in Table 2.

Table 2. Reagent volumes for unrefent ussue amounts.					
Tissue Weight (mg)	CER I (µL)	CER II (µL)	<u>NER (µL)</u>		
20	200	11	100		
40	400	22	200		
80	800	44	400		
100	1000	55	500		

Table 2. Reagent volumes for different tissue amounts.*

*Different tissue types may require more or less NE-PER Reagents per weight to optimally extract cytoplasmic and nuclear proteins.

Cytoplasmic and Nuclear Protein Extraction

Note: Scale this protocol depending on the cell pellet volume (Tables 1 and 2). Maintain the volume ratio of CER I:CER II : NER reagents at 200:11:100 μ L, respectively.

1. Vortex the tube vigorously on the highest setting for 15 seconds to fully suspend the cell pellet.

Incubate the tube on ice for 10 minutes.

2. Add ice-cold CER II to the tube.

3. Vortex the tube for 5 seconds on the highest setting. Incubate tube on ice for 1 minute.

4. Vortex the tube for 5 seconds on the highest setting. Centrifuge the tube for 5 minutes at maximum speed in a microcentrifuge (~16,000 \times g).

5. Immediately transfer the supernatant (cytoplasmic extract) to a clean pre-chilled tube. Place this tube on ice until use or storage (see Step 10).

6. Suspend the insoluble (pellet) fraction produced in Step 4, which contains nuclei, in ice-cold NER.

7. Vortex on the highest setting for 15 seconds. Place the sample on ice and continue vortexing for 15 seconds every 10 minutes, for a total of 40 minutes.

8. Centrifuge the tube at maximum speed (~16,000 \times *g*) in a microcentrifuge for 10 minutes.

9. Immediately transfer the supernatant (nuclear extract) fraction to a clean pre-chilled tube. Place on ice.

10. Store extracts at -80°C until use.