PUBLICATIONS-FUDAN UNIVERSITY

PUBLICATIONS

    PUBLICATIONS

    HOME > PUBLICATIONS

    1. Yu Ding,Boxun Lu. SnapShot: Targeted protein degradation. Cell. 2024 Nov 14;187(23):6784-6784.e1.

    2.Barrow ER, et. al. Discovery of SQSTM1/p62-dependent P-bodies that regulate the NLRP3 inflammasome. Cell Rep.2024 Mar 26;43(3):113935.

    3.Jia, et. al. DDHD2, whose mutations cause spastic paraplegia type 54, enhances lipophagy via engaging ATG8 family proteins. Cell Death Differ. 2024 Mar;31(3):348-359.

    4.Li, et. al. P53 upregulation by USP7-engaging molecular glues. Sci Bull (Beijing). 2024 Jun 30;69(12):1936-1953.

    5. Lu, J., et al., Phase transition and lysosomal degradation of expanded CAG repeat RNA suppress global protein synthesis. Autophagy, 2024. 20(2): p. 451-453.

    6. Zhang, Y., et al., Clearance of lipid droplets by chimeric autophagy-tethering compound ameliorates the age-related macular degeneration phenotype in mice lacking APOE. Autophagy, 2023. 19(10): p. 2668-2681.

    7. Tan, S., et al., Targeted clearance of mitochondria by an autophagy-tethering compound (ATTEC) and its potential therapeutic effects. Sci Bull (Beijing), 2023. 68(23): p. 3013-3026.

    8. Pan, Y., et al., Gelation of cytoplasmic expanded CAG RNA repeats suppresses global protein synthesis. Nat Chem Biol, 2023. 19(11): p. 1372-1383.

    9. Lu, J., et al., Drugging "undruggable" neurodegenerative disease targets with small molecules. Sci Bull (Beijing), 2023. 68(16): p. 1715-1718.

    10. Chen, N., B. Lu, and Y. Fu, Autophagic Clearance of Lipid Droplets Alters Metabolic Phenotypes in a Genetic Obesity-Diabetes Mouse Model. Phenomics, 2023. 3(2): p. 119-129.

    11. Zhang, X., et al., Inhibition of HIPK3 by AST487 Ameliorates Mutant HTT-Induced Neurotoxicity and Apoptosis via Enhanced Autophagy. Neurosci Bull, 2022. 38(1): p. 99-103.

    12. Song, H., et al., Suppression of toxicity of the mutant huntingtin protein by its interacting compound, desonide. Proc Natl Acad Sci U S A, 2022. 119(10): p. e2114303119.

    13. Ding, Y., et al., Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev, 2022. 51(21): p. 8832-8876.

    14. Zhang, H., et al., Modeling the Degradation Effects of Autophagosome Tethering Compounds. Neurosci Bull, 2021. 37(2): p. 255-260.

    15. Lu, S. and B. Lu, Degeneration Versus Development: Hunting-Out the D-Unit of Huntington's Disease. Neurosci Bull, 2021. 37(6): p. 757-760.

    16. Fu, Y. and B. Lu, Targeting lipid droplets for autophagic degradation by ATTEC. Autophagy, 2021. 17(12): p. 4486-4488.

    17. Fu, Y., et al., Degradation of lipid droplets by chimeric autophagy-tethering compounds. Cell Res, 2021. 31(9): p. 965-979.

    18. Zhao, Q., et al., HuR stabilizes HTT mRNA via interacting with its exon 11 in a mutant HTT-dependent manner. RNA Biol, 2020. 17(4): p. 500-516.

    19. Wen, X., et al., Tau Accumulation via Reduced Autophagy Mediates GGGGCC Repeat Expansion-Induced Neurodegeneration in Drosophila Model of ALS. Neurosci Bull, 2020. 36(12): p. 1414-1428.

    20. Li, Z., et al., ATTEC: a potential new approach to target proteinopathies. Autophagy, 2020. 16(1): p. 185-187.

    21. Ding, Y., Y. Fei, and B. Lu, Emerging New Concepts of Degrader Technologies. Trends Pharmacol Sci, 2020. 41(7): p. 464-474.

    22. Yang, Y., et al., Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response. Nat Commun, 2019. 10(1): p. 3759.

    23. Li, Z., et al., Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature, 2019. 575(7781): p. 203-209.

    24. Song, H., et al., Targeting Gpr52 lowers mutant HTT levels and rescues Huntington's disease-associated phenotypes. Brain, 2018. 141(6): p. 1782-1798.

    25. Fu, Y., X. Sun, and B. Lu, HIPK3 modulates autophagy and HTT protein levels in neuronal and mouse models of Huntington disease. Autophagy, 2018. 14(1): p. 169-170.

    26. Feng, X., S. Luo, and B. Lu, Conformation Polymorphism of Polyglutamine Proteins. Trends Biochem Sci, 2018. 43(6): p. 424-435.

    27. Al-Ramahi, I., et al., High-Throughput Functional Analysis Distinguishes Pathogenic, Nonpathogenic, and Compensatory Transcriptional Changes in Neurodegeneration. Cell Syst, 2018. 7(1): p. 28-40 e4.

    28. Yu, M., et al., Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models. Cell Res, 2017. 27(12): p. 1441-1465.

    29. Sun, X., et al., Conformation-dependent recognition of mutant HTT (huntingtin) proteins by selective autophagy. Autophagy, 2017. 13(12): p. 2111-2112.

    30. Fu, Y.H., et al., A toxic mutant huntingtin species is resistant to selective autophagy. Nature Chemical Biology, 2017. 13(11): p. 1152-+.

    31. Wu, P., et al., A high-throughput-compatible assay to measure the degradation of endogenous Huntingtin proteins. Acta Pharmacol Sin, 2016. 37(10): p. 1307-1314.

    32. Yao, Y., et al., A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity. Elife, 2015. 4.

    33. Yu, S., et al., Drugging unconventional targets: insights from Huntington's disease. Trends Pharmacol Sci, 2014. 35(2): p. 53-62.

    34. Liang, Y., et al., TR-FRET Assays for Endogenous Huntingtin Protein Level in Mouse Cells. J Huntingtons Dis, 2014. 3(3): p. 253-9.

    35. Cui, X., et al., TR-FRET assays of Huntingtin protein fragments reveal temperature and polyQ length-dependent conformational changes. Sci Rep, 2014. 4: p. 5601.



    220 Handan Rd., Shanghai(200433)  © 2024 FUDAN UNIVERSITY.