1. Wang H, Wang Q, Xu H, Wu Y, Cheung S, Xu Q, Pan C, Cao J, Cao Z, Yang R, Ding Y, Fei Y, Chen Y, Wang J, Liu C, Lu B*. MEK1/2 inhibitors suppress pathological α-synuclein and neurotoxicity in cell models and a humanized mouse model of Parkinson's disease. Sci Transl Med. 2025 May 14;17(798):eadp4625. doi: 10.1126/scitranslmed.adp4625. Epub 2025 May 14.
2. Zhang B, Ge W, Ma M, Li S, Yu J, Yang G, Wang H, Li J, Li Q, Zeng R, Lu B*, Shui W.Post-translational modifications orchestrate the intrinsic signaling bias of GPR52. Nat Chem Biol. 2025 Mar 14. doi: 10.1038/s41589-025-01864-w
3. Zhong C, Gao X, Chen Q, Guan B, Wu W, Ma Z, Tao M, Liu X, Ding Y, Fei Y, Liu Y, Lu B*, LiZ. R406 and its structural analogs reduce SNCA/α-synuclein levels via autophagic degradation. Autophagy. 2025 Apr 4:1-17. doi: 10.1080/15548627.2025.2483886.
4. Yu Ding,Boxun Lu. SnapShot: Targeted protein degradation. Cell. 2024 Nov 14;187(23):6784-6784.e1.
5.Barrow ER, et. al. Discovery of SQSTM1/p62-dependent P-bodies that regulate the NLRP3 inflammasome. Cell Rep.2024 Mar 26;43(3):113935.
6.Jia, et. al. DDHD2, whose mutations cause spastic paraplegia type 54, enhances lipophagy via engaging ATG8 family proteins. Cell Death Differ. 2024 Mar;31(3):348-359.
7.Li, et. al. P53 upregulation by USP7-engaging molecular glues. Sci Bull (Beijing). 2024 Jun 30;69(12):1936-1953.
8. Lu, J., et al., Phase transition and lysosomal degradation of expanded CAG repeat RNA suppress global protein synthesis. Autophagy, 2024. 20(2): p. 451-453.
9. Zhang, Y., et al., Clearance of lipid droplets by chimeric autophagy-tethering compound ameliorates the age-related macular degeneration phenotype in mice lacking APOE. Autophagy, 2023. 19(10): p. 2668-2681.
10. Tan, S., et al., Targeted clearance of mitochondria by an autophagy-tethering compound (ATTEC) and its potential therapeutic effects. Sci Bull (Beijing), 2023. 68(23): p. 3013-3026.
11. Pan, Y., et al., Gelation of cytoplasmic expanded CAG RNA repeats suppresses global protein synthesis. Nat Chem Biol, 2023. 19(11): p. 1372-1383.
12. Lu, J., et al., Drugging "undruggable" neurodegenerative disease targets with small molecules. Sci Bull (Beijing), 2023. 68(16): p. 1715-1718.
13. Chen, N., B. Lu, and Y. Fu, Autophagic Clearance of Lipid Droplets Alters Metabolic Phenotypes in a Genetic Obesity-Diabetes Mouse Model. Phenomics, 2023. 3(2): p. 119-129.
14. Zhang, X., et al., Inhibition of HIPK3 by AST487 Ameliorates Mutant HTT-Induced Neurotoxicity and Apoptosis via Enhanced Autophagy. Neurosci Bull, 2022. 38(1): p. 99-103.
15. Song, H., et al., Suppression of toxicity of the mutant huntingtin protein by its interacting compound, desonide. Proc Natl Acad Sci U S A, 2022. 119(10): p. e2114303119.
16. Ding, Y., et al., Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev, 2022. 51(21): p. 8832-8876.
17. Zhang, H., et al., Modeling the Degradation Effects of Autophagosome Tethering Compounds. Neurosci Bull, 2021. 37(2): p. 255-260.
18. Lu, S. and B. Lu, Degeneration Versus Development: Hunting-Out the D-Unit of Huntington's Disease. Neurosci Bull, 2021. 37(6): p. 757-760.
19. Fu, Y. and B. Lu, Targeting lipid droplets for autophagic degradation by ATTEC. Autophagy, 2021. 17(12): p. 4486-4488.
20. Fu, Y., et al., Degradation of lipid droplets by chimeric autophagy-tethering compounds. Cell Res, 2021. 31(9): p. 965-979.
21. Zhao, Q., et al., HuR stabilizes HTT mRNA via interacting with its exon 11 in a mutant HTT-dependent manner. RNA Biol, 2020. 17(4): p. 500-516.
22. Wen, X., et al., Tau Accumulation via Reduced Autophagy Mediates GGGGCC Repeat Expansion-Induced Neurodegeneration in Drosophila Model of ALS. Neurosci Bull, 2020. 36(12): p. 1414-1428.
23. Li, Z., et al., ATTEC: a potential new approach to target proteinopathies. Autophagy, 2020. 16(1): p. 185-187.
24. Ding, Y., Y. Fei, and B. Lu, Emerging New Concepts of Degrader Technologies. Trends Pharmacol Sci, 2020. 41(7): p. 464-474.
25. Yang, Y., et al., Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response. Nat Commun, 2019. 10(1): p. 3759.
26. Li, Z., et al., Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature, 2019. 575(7781): p. 203-209.
27. Song, H., et al., Targeting Gpr52 lowers mutant HTT levels and rescues Huntington's disease-associated phenotypes. Brain, 2018. 141(6): p. 1782-1798.
28. Fu, Y., X. Sun, and B. Lu, HIPK3 modulates autophagy and HTT protein levels in neuronal and mouse models of Huntington disease. Autophagy, 2018. 14(1): p. 169-170.
29. Feng, X., S. Luo, and B. Lu, Conformation Polymorphism of Polyglutamine Proteins. Trends Biochem Sci, 2018. 43(6): p. 424-435.
30. Al-Ramahi, I., et al., High-Throughput Functional Analysis Distinguishes Pathogenic, Nonpathogenic, and Compensatory Transcriptional Changes in Neurodegeneration. Cell Syst, 2018. 7(1): p. 28-40 e4.
31. Yu, M., et al., Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models. Cell Res, 2017. 27(12): p. 1441-1465.
32. Sun, X., et al., Conformation-dependent recognition of mutant HTT (huntingtin) proteins by selective autophagy. Autophagy, 2017. 13(12): p. 2111-2112.
33. Fu, Y.H., et al., A toxic mutant huntingtin species is resistant to selective autophagy. Nature Chemical Biology, 2017. 13(11): p. 1152-+.
34. Wu, P., et al., A high-throughput-compatible assay to measure the degradation of endogenous Huntingtin proteins. Acta Pharmacol Sin, 2016. 37(10): p. 1307-1314.
35. Yao, Y., et al., A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity. Elife, 2015. 4.
36. Yu, S., et al., Drugging unconventional targets: insights from Huntington's disease. Trends Pharmacol Sci, 2014. 35(2): p. 53-62.
37. Liang, Y., et al., TR-FRET Assays for Endogenous Huntingtin Protein Level in Mouse Cells. J Huntingtons Dis, 2014. 3(3): p. 253-9.
38. Cui, X., et al., TR-FRET assays of Huntingtin protein fragments reveal temperature and polyQ length-dependent conformational changes. Sci Rep, 2014. 4: p. 5601.
220 Handan Rd., Shanghai(200433) © 2024 FUDAN UNIVERSITY.