PUBLICATIONS

    PUBLICATIONS

    HOME > PUBLICATIONS

    1. Lu, J., et al., Phase transition and lysosomal degradation of expanded CAG repeat RNA suppress global protein synthesis. Autophagy, 2024. 20(2): p. 451-453.

    2. Zhang, Y., et al., Clearance of lipid droplets by chimeric autophagy-tethering compound ameliorates the age-related macular degeneration phenotype in mice lacking APOE. Autophagy, 2023. 19(10): p. 2668-2681.

    3. Tan, S., et al., Targeted clearance of mitochondria by an autophagy-tethering compound (ATTEC) and its potential therapeutic effects. Sci Bull (Beijing), 2023. 68(23): p. 3013-3026.

    4. Pan, Y., et al., Gelation of cytoplasmic expanded CAG RNA repeats suppresses global protein synthesis. Nat Chem Biol, 2023. 19(11): p. 1372-1383.

    5. Lu, J., et al., Drugging "undruggable" neurodegenerative disease targets with small molecules. Sci Bull (Beijing), 2023. 68(16): p. 1715-1718.

    6. Chen, N., B. Lu, and Y. Fu, Autophagic Clearance of Lipid Droplets Alters Metabolic Phenotypes in a Genetic Obesity-Diabetes Mouse Model. Phenomics, 2023. 3(2): p. 119-129.

    7. Zhang, X., et al., Inhibition of HIPK3 by AST487 Ameliorates Mutant HTT-Induced Neurotoxicity and Apoptosis via Enhanced Autophagy. Neurosci Bull, 2022. 38(1): p. 99-103.

    8. Song, H., et al., Suppression of toxicity of the mutant huntingtin protein by its interacting compound, desonide. Proc Natl Acad Sci U S A, 2022. 119(10): p. e2114303119.

    9. Ding, Y., et al., Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev, 2022. 51(21): p. 8832-8876.

    10. Zhang, H., et al., Modeling the Degradation Effects of Autophagosome Tethering Compounds. Neurosci Bull, 2021. 37(2): p. 255-260.

    11. Lu, S. and B. Lu, Degeneration Versus Development: Hunting-Out the D-Unit of Huntington's Disease. Neurosci Bull, 2021. 37(6): p. 757-760.

    12. Fu, Y. and B. Lu, Targeting lipid droplets for autophagic degradation by ATTEC. Autophagy, 2021. 17(12): p. 4486-4488.

    13. Fu, Y., et al., Degradation of lipid droplets by chimeric autophagy-tethering compounds. Cell Res, 2021. 31(9): p. 965-979.

    14. Zhao, Q., et al., HuR stabilizes HTT mRNA via interacting with its exon 11 in a mutant HTT-dependent manner. RNA Biol, 2020. 17(4): p. 500-516.

    15. Wen, X., et al., Tau Accumulation via Reduced Autophagy Mediates GGGGCC Repeat Expansion-Induced Neurodegeneration in Drosophila Model of ALS. Neurosci Bull, 2020. 36(12): p. 1414-1428.

    16. Li, Z., et al., ATTEC: a potential new approach to target proteinopathies. Autophagy, 2020. 16(1): p. 185-187.

    17. Ding, Y., Y. Fei, and B. Lu, Emerging New Concepts of Degrader Technologies. Trends Pharmacol Sci, 2020. 41(7): p. 464-474.

    18. Yang, Y., et al., Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response. Nat Commun, 2019. 10(1): p. 3759.

    19. Li, Z., et al., Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature, 2019. 575(7781): p. 203-209.

    20. Song, H., et al., Targeting Gpr52 lowers mutant HTT levels and rescues Huntington's disease-associated phenotypes. Brain, 2018. 141(6): p. 1782-1798.

    21. Fu, Y., X. Sun, and B. Lu, HIPK3 modulates autophagy and HTT protein levels in neuronal and mouse models of Huntington disease. Autophagy, 2018. 14(1): p. 169-170.

    22. Feng, X., S. Luo, and B. Lu, Conformation Polymorphism of Polyglutamine Proteins. Trends Biochem Sci, 2018. 43(6): p. 424-435.

    23. Al-Ramahi, I., et al., High-Throughput Functional Analysis Distinguishes Pathogenic, Nonpathogenic, and Compensatory Transcriptional Changes in Neurodegeneration. Cell Syst, 2018. 7(1): p. 28-40 e4.

    24. Yu, M., et al., Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models. Cell Res, 2017. 27(12): p. 1441-1465.

    25. Sun, X., et al., Conformation-dependent recognition of mutant HTT (huntingtin) proteins by selective autophagy. Autophagy, 2017. 13(12): p. 2111-2112.

    26. Fu, Y.H., et al., A toxic mutant huntingtin species is resistant to selective autophagy. Nature Chemical Biology, 2017. 13(11): p. 1152-+.

    27. Wu, P., et al., A high-throughput-compatible assay to measure the degradation of endogenous Huntingtin proteins. Acta Pharmacol Sin, 2016. 37(10): p. 1307-1314.

    28. Yao, Y., et al., A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity. Elife, 2015. 4.

    29. Yu, S., et al., Drugging unconventional targets: insights from Huntington's disease. Trends Pharmacol Sci, 2014. 35(2): p. 53-62.

    30. Liang, Y., et al., TR-FRET Assays for Endogenous Huntingtin Protein Level in Mouse Cells. J Huntingtons Dis, 2014. 3(3): p. 253-9.

    31. Cui, X., et al., TR-FRET assays of Huntingtin protein fragments reveal temperature and polyQ length-dependent conformational changes. Sci Rep, 2014. 4: p. 5601.



    220 Handan Rd., Shanghai(200433)  © 2024 FUDAN UNIVERSITY.